Sabtu, 21 Mei 2011

Pesawat Sinar - X dan Asal Usulnya

Seperti yang sudah saya janjikan sebelumnya, kita akan membahas alat-alat / instrumen yang bisa dipakai pada dunia medis. Sekarang yang akan dibahas duluan adalah tentang pesawat sinar-X. Sebelum membahas lebih jauh tentang pesawat sinar-X, terlebih dulu kita harus tau asal usul dari sinar-X itu sendiri. Kita mulai aja ya.....

Asal usul penemuan sinar-X

Di akhir tahun 1895, Roentgen (Wilhelm Conrad Roentgen, Jerman, 1845-1923), seorang profesor fisika dan rektor Universitas Wuerzburg di Jerman dengan sungguh-sungguh melakukan penelitian tabung sinar katoda. Ia membungkus tabung dengan suatu kertas hitam agar tidak terjadi kebocoran fotoluminesensi dari dalam tabung ke luar.

Lalu ia membuat ruang penelitian menjadi gelap. Pada saat membangkitkan sinar katoda, ia mengamati sesuatu yang di luar dugaan. Pelat fotoluminesensi yang ada di atas meja mulai berpendar di dalam kegelapan. Walaupun dijauhkan dari tabung, pelat tersebut tetap berpendar. Dijauhkan sampai lebih 1 m dari tabung, pelat masih tetap berpendar. Roentgen berpikir pasti ada jenis radiasi baru yang belum diketahui terjadi di dalam tabung sinar katoda dan membuat pelat fotoluminesensi berpendar. Radiasi ini disebut sinar-X yang maksudnya adalah radiasi yang belum diketahui.




Sinar-X atau sinar Röntgen adalah salah satu bentuk dari radiasi elektromagnetik dengan panjang gelombang berkisar antara 10 nanometer ke 100 pikometer (mirip dengan frekuensi dalam jangka 30 PHz to 60 EHz). Sinar-X umumnya digunakan dalam diagnosis gambar medis dan Kristalografi sinar-X. Sinar-X adalah bentuk dari radiasi ion dan dapat berbahaya.
Source : Wikipedia

Tahun 1895 itu Roentgen sendirian melakukan penelitian sinar-X dan meneliti sifat-sifatnya. Pada tahun itu juga Roentgen mempublikasikan laporan penelitiannya. Berikut ini adalah sifat-sifat sinar-X:
  1. Sinar-X dipancarkan dari tempat yang paling kuat tersinari oleh sinar katoda.
  2. Intensitas cahaya yang dihasilkan pelat fotoluminesensi, berbanding terbalik dengan kuadrat jarak antara titik terjadinya sinar-X dengan pelat fotoluminesensi. Meskipun pelat dijauhkan sekitar 2 m, cahaya masih dapat terdeteksi.
  3. Sinar-X dapat menembus buku 1000 halaman tetapi hampir seluruhnya terserap oleh timbal setebal 1,5 mm.
  4. Pelat fotografi sensitif terhadap sinar-X.
  5. Ketika tangan terpapari sinar-X di atas pelat fotografi, maka akan tergambar foto tulang tersebut pada pelat fotografi.Skema peralatan ditampilkan pada Gambar 2. Foto tulang tangan yang diambil pada saat itu ditampilkan pada Gambar 3.
  6. Lintasan sinar-X tidak dibelokkan oleh medan magnet (daya tembus dan lintasan yang tidak terbelokkan oleh medan magnet merupakan sifat yang membuat sinar-X berbeda dengan sinar katoda).

Laporan pertama Roentgen mengenai sinar-X dimuat pada halaman 132-141 laporan Asosiasi Fisika Medik Wuerzburg tahun 1895. Di awal tahun 1896 reprint laporan Roentgen dikirimkan kepada ilmuwan-ilmuwan terkenal. Karena tidak dibelokkan oleh medan magnet, maka orang tahu bahwa sinar-X berbeda dengan sinar katoda. Pada saat itu belum ditemukan fenomena interferensi dan difraksi. Karena itu muncullah persaingan antara teori partikel dengan teori gelombang untuk menjelaskan esensi/substansi sinar-X. Teori partikel dikemukakan antara lain oleh W.H. Bragg, teori gelombang dikemukakan antara lain oleh Stokes dan C.G. Barkla. Sejak saat itu teori gelombang didukung oleh lebih banyak orang. Pada tahun 1912, fenomena difraksi sinar-X oleh kristal ditemukan oleh Max von Laue dan kemudian dapat dipastikan bahwa sinar-X adalah gelombang elektromagnetik. Tahun 1922 Compton menemukan efek Compton berdasarkan penelitian hamburan Compton. Berdasarkan penelitian sinar-X ia dapat memastikan bahwa gelombang elektromagnetik memiliki sifat dualisme gelombang dan materi (partikel).


Terbentuknya Sinar-X pada Pesawat Sinar-X

Untuk keperluan diagnostik sendiri, citra (image) sinar-X diperoleh pada permukaan film fotografi. Citra terbentuk karena terjadi perbedaan intensitas sinar-X yang datang (sampai) ke film setelah di’lewat’kan melalui bagian tubuh yang difoto. Bagian tubuh yang lebih rapat dan mengandung unsur kimia tertentu dapat bereaksi dengan sinar-X dan menyebabkan kuantitas sinar-X yang sampai ke film menjadi berkurang. Contoh kasusnya adalah pada pemotretan organ tulang. Tulang mengadung banyak unsur kimia kalsium (Ca) dan unsur kalsium menyerap banyak partikel sinar-X sehingga menyebabkan berkurangnya sinar-X yang tiba di film pada daerah yg terhalangi tulang tersebut. Hasilnya adalah citra berwarna putih sebagai gambaran tulang pada film, sedangkan organ lainnya akan dilewatkan begitu saja dan menghitamkan film.


Sebuah foto sinar-X (radiograf) diambil oleh Rontgen

Pada aplikasinya, penciptaan sinar-X tak lagi mengandalkan mekanisme tabung Crookes, melakinkan dengan menggunakan pesawat sinar-X modern. Pesawat sinar-X modern pada dasarnya membangkitkan sinar-X dengan mem’bombardir’ target logam dengan elektron berkecepatan tinggi. Elektron yang berkecepatan tinggi tentunya memiliki energi yang tinggi, dan karenanya mampu menembus elektron-elektron orbital luar pada materi target hingga menumbuk elektron orbital pada kulit K (terdekat dengan inti). 

Elektron yang tertumbuk akan terpental dari orbitnya, meninggalkan hole pada tempatnya semula. Hole yang ditinggalkannya itu akan diisi oleh elektron dari kulit luar dan proses itu melibatkan pelepasan foton (cahaya elektromagnetik) dari elektron pengisi tersebut. Foton yang keluar itulah yang kemudian disebut sinar-X, dan keseluruhan proses terbentuknya sinar-X melalui mekanisme tersebut disebut mekanisme sinar-X karakteristik. 

Adapun mekanisme lain yang mungkin terjadi adalah emisi foton yang dialami oleh elektron cepat yang dibelokkan oleh inti atom target atas konsekuensi dari interaksi Coulomb antara inti atom target dengan elektron cepat. Proses pembelokkan ini melibatkan perlambatan dan karenanya memerlukan emisi energi berupa foton. Mekanisme ini disebut Bremsstrahlung (bahasa Jerman dari ‘radiasi pengereman’).


Ilustrasi proses terbentuknya sinar-X baik Bremsstrahlung maupun sinar-X karakteristik 
Selanjutnya, pesawat sinar-X modern memanfaatkan kedua kemungkinan di atas untuk memungkinkan produksi sinar-X.

Ilustrasi cara kerja pesawat sinar-X

Seperti terlihat pada gambar ilustrasi, beda potensial antara anoda dan katoda dibuat sedemikian rupa sehingga mencapai angka yang cukup untuk membuat elektron melompat dengan kecepatan tinggi setelah katoda diberi energy (biasanya 1000 Volt). Setelah elektron pada katoda melompat dan menghantam filamen pada anoda, terjadilah sinar-X yang terjadi dengan mekanisme sinar-X karakteristik ataupun Bremsstrahlung

Karena filamen pada anoda dimiringkan ke bawah, foton sinar-X akan menuju ke bawah, keluar dari pesawat sinar-X lalu melewati jaringan yang dipotret. Bayangan/citra pun terbentuk pada film yang diletakkan di bawahnya.


Gambar Pesawat Sinar-X
Contoh gambar organ dalam ketika difoto dengan sinar-X

Untuk lebih jelasnya tentang cara kerja pesawat sinar-X, Anda bisa melihatnya pada video dibawah



Sumber

Berbagai sumber :
  1. http://id.wikipedia.org/wiki/Sinar-X
  2. http://en.wikipedia.org/wiki/X-ray
  3. http://forum.upi.edu/v3/index.php?topic=13693.msg47692#msg47692
  4. http://fisikamedisui07.blogspot.com/2010/03/dari-kanker-ke-fisika.html Credit By Lukmanda Evan Lubis
  5. http://youtu.be/7vSH-dlM5U8

0 komentar:

:)) ;)) ;;) :D ;) :p :(( :) :( :X =(( :-o :-/ :-* :| 8-} :)] ~x( :-t b-( :-L x( =)) Didukung oleh NewPurwacarita

Poskan Komentar

Twitter Delicious Facebook Digg Stumbleupon Favorites More

 
Powered by Blogger